Nov 26, 2024  
Undergraduate Bulletin 2023-2024 
    
Undergraduate Bulletin 2023-2024 Archived Bulletin

Add to Portfolio (opens a new window)

L.BAN 320 - Predictive Modeling


Credits: 3

The rapid expansion of data availability has made possible considerable advances in modeling for the purpose of prediction. Virtually all decisions, at least in part, depend on predictions of what will happen if something changes (either under our control or not). This course explores applications of a variety of current predictive modeling techniques to data. Included are multiple regression modeling, logistic regression, decision trees, random forests, neural networks, and simulation analysis. The emphasis will be on applied analysis, utilizing data from a wide variety of areas, including business, politics, socioeconomic conditions, health, sports and entertainment, etc. Students will build and compare predictive models, learn how to evaluate these models, and how to apply model results to improve decision making.
Prerequisite: L.BAN 210  and L.DAT 200  
Co-requisite: None
General Education Classification: Not Applicable



Add to Portfolio (opens a new window)